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Abstract

The effects of intra-basolateral amygdala (intra-BLA) injections of physostigmine, atropine, nicotine and/or mecamylamine on morphine-

induced conditioned place preference (CPP) in rats was investigated by using an unbiased 3-day schedule of place conditioning design.

Animals that received 3 daily injections of morphine (0.5–10 mg/kg) subcutaneously (s.c.) or saline (1.0 ml/kg, s.c.) showed a significant

preference for compartment paired with morphine. The maximum response was observed with 7.5 mg/kg of the opioid. Administration of the

anticholinesterase drug, physostigmine (1, 3 and 5 Ag/rat) with an ineffective dose of morphine (0.5 mg/kg) elicited a significant CPP.

Injections of antimuscarinic receptor agent, atropine (1, 4 and 7 Ag/rat) dose-dependently inhibited the morphine (7.5 mg/kg)-induced place

preference. The injections of nicotine (0.75, 1 and 2 Ag/rat) potentiated the morphine (0.5 mg/kg)-induced place preference, while the

nicotinic receptor antagonist, mecamylamine (1, 3 and 6 Ag/rat) dose-dependently inhibited the morphine (7.5 mg/kg)-induced place

preference. Furthermore, administration of atropine (7 Ag/rat) but not mecamylamine (6 Ag/rat) reduced the response induced by different

doses of physostigmine plus morphine. Moreover, mecamylamine (6 Ag/rat) but not atropine (7 Ag/rat) reduced the response induced by

different doses of nicotine plus morphine. It is concluded that the muscarinic and nicotinic receptor mechanisms in the BLA may be involved

in the acquisition of morphine-induced place preference.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Findings in our previous experiments indicated that the

amygdala has an important role in mediation of morphine

reward (Zarrindast et al., 2002, 2003b, 2004; Rezayof et al.,

2002). The amygdaloid complex is composed of several

different nuclei and cortical areas that are linked to each

other and also to other brain regions via organized pathways
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(Pitkanen et al., 1997). The basolateral amygdala (BLA),

being the main part of the amygdaloid body, is a key

subregion of the amygdala involved in the formation and

expression of stimulus–reward associations (Cador et al.,

1989; Hatfield et al., 1996; Everitt et al., 1999). Several

neurotransmitter systems such as dopamine (See et al.,

2001), glutamate (Burns et al., 1994) and acetylcholine

(ACh; See et al., 2003) have been implicated in amygdala-

dependent mediation of stimulus–reward associations. It

has been also reported that cholinergic innervation of

muscarinic ACh receptors in the BLA is crucial for the

formation of stimulus–drug associations (See et al., 2003).

Conditioned place preference (CPP), a behavioral task

often used to measure reinforcing properties of drugs
Behavior 82 (2005) 1 – 10
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(Tzschentke, 1998), has been used to measure memory or

learning of simple stimulus–reward associations (McIntyre

et al., 1998). Previous studies suggested that the amygdala is

important for learning tasks such as CPP that use appetitive

motivation and the reinforcement is of high affective value

(Hiroi and White, 1991; McIntyre et al., 1998). Further-

more, a critical role for cholinergic modulation of amygda-

loid-mediated learning of stimulus–reward associations has

been demonstrated (See et al., 2003). It has also been

suggested that cholinergic activity is a mechanism by which

the amygdala modulates memory (Ohno et al., 1992;

Riekkinen et al., 1993). Both muscarinic–cholinergic and

nicotinic–cholinergic systems have been shown to be

involved in this memory system (Ohno et al., 1992;

McIntyre et al., 1998).

Several studies suggest that morphine induces a condi-

tioned preference for the place in which it has been

administered in rats (Tzschentke, 1998; Manzanedo et al.,

2001; Liu et al., 2003). Although evidence suggests that the

mesolimbic dopaminergic system is necessary for the

acquisition of morphine-induced CPP (Kobe, 1992; Wise,

1998), the role of other neurotransmitter systems such as

GABA (Zarrindast et al., 2004), nitric oxide (Zarrindast et al.,

2002; Gholami et al., 2002) and glutamate (Tzschentke and

Schmidt, 1995) also exist. Considering the involvement of

the amygdala cholinergic system in the learning and memory,

and also the involvement of amygdala in morphine-induced

CPP, the main aim of the present study was to assess the role

of muscarinic and nicotininc receptor mechanisms within the

amygdala in the development of morphine-induced CPP.
2. Materials and methods

2.1. Animals

Male wistar rats (Pasteur Institute; Tehran, Iran) weigh-

ing 250–300 g, at the time of surgery, were used. The

animals were kept in an animal house with a 12-h light/12-h

dark cycle and controlled temperature (22T2 -C). They had

ad libitum access to food and water. All animals were

allowed to adapt to the laboratory conditions for at least 1

week before surgery and were handled for 5 min per day

during this adaptation period. Each animal was used once

only. Eight animals were used in each group of experiments.

All procedures were carried out in accordance with institu-

tional guidelines for animal care and use.

2.2. Apparatus

The three-compartment conditioned place preference

apparatus, based on the design of Carr and White (1983),

was used and was made of wood. Two of the compartments

(A and B) were identical in size (40�30�30 cm) but

differed in shading and texture. Compartment A was white

with black horizontal stripes 2 cm wide on the walls and had
a textured floor. The other compartment (B) was black with

vertical white stripes 2 cm wide and had a smooth floor. The

third compartment (C) was a red tunnel (40�15�30 cm). It

protruded from the rear of the two large compartments and

connected the entrances to them.

2.3. Drugs

The drugs used in the study were morphine sulfate

(Temad Co., Teharan, Iran), physostigmine, atropine,

mecamylamine (Sigma, St. Louis, CA, USA) and nicotine

bitartrate (BDH, Poole, UK). All drugs were dissolved in

sterile 0.9% saline except for nicotine that was dissolved in

saline and the pH was adjusted to 7.2T0.1 with NaOH (0.1

N). Physostigmine, atropine, mecamylamine and nicotine

were administered intra-basolateral amygdala (intra-BLA)

and morphine was injected subcutaneously (s.c.). Control

animals received either saline or vehicle.

2.4. Surgical procedure

The animals were anesthetized with intraperitoneal

injection of ketamine hydrochloride (100 mg/kg) plus

xylasine (4 mg/kg) and placed in a stereotaxic apparatus,

while maintaining the incisor bar at approximately 3.3 mm

below horizontal zero to achieve a flat skull position. The

skin was then incised and the skull was cleaned. In

accordance with previous studies (Zarrindast et al., 2004)

a stainless steel 22-gauge guide cannulae were placed

(bilaterally) 2 mm above the intended site of injection.

The guide cannulae were anchored by a jeweler’s screw, and

the incision was closed with dental cement. To prevent

clogging, stainless steel stylets (27 gauge) were placed in

the guide cannulae until the animals were given the BLA

injection. Animals were allowed 7 days to recover before

place conditioning processes.

2.5. Injection into the basolateral amygdala

The animals were gently restrained by hand; the stylets

were removed from the guide cannulae. For intra-BLA

injections of drugs, a 1-Al glass Hamilton syringe was used.

The injection (inner) cannulae (27-gauge) projected a further

2 mm ventral to the tip of the guide, and were attached with

polyethylene tubing to the Hamilton syringe. Left and right

BLA were infused with a 0.5-Al solution in each side (1 Al/
rat) over a 60-s period. Cannulae were left in place for an

additional 60-s to allow diffusion, then the stylets were

reinserted into the guide cannulae. When 2 drugs needed to

be injected, they were administered separately.

2.6. Experimental procedure

The CPP paradigm took place on 5 consecutive days by

using an unbiased procedure. The experiment consisted of

the three following phases.
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2.6.1. Pre-conditioning

On day 1, the animals were accustomed to the

conditioned place preference apparatus for 15 min. The

removable wall was raised, thereby allowing each rat to

freely explore the three compartments. An observer who

was unaware of the treatment group for each rat recorded the

time spent in each compartment. The amount of time spent

in each compartment was measured to assess unconditioned

preference (the position of the rat was defined by the

position of its front paws). In the particular experimental

setup used in this study, the animals did not show an

unconditioned preference for either of the compartments.

Animals were then randomly assigned to one of two groups

for place conditioning and a total of eight animals were used

for each subsequent experiment.

2.6.2. Conditioning

Place conditioning phase started 1 day after the pre-

conditioning phase. This phase consisted of six 45-min

sessions (three saline and three drug pairing). These sessions

were conducted twice each day (from day 2 to day 4) with a

6-h interval. On each of these days, animals received one

conditioning session with morphine and one with saline.

During these sessions, the animals were confined to one

compartment by closing the removable wall. Animals of

each group were injected with morphine and were imme-

diately confined to one compartment of the apparatus for 45

min. Six hours later animals were administered saline and

confined to the other compartment for 45 min. Treatment

compartment and the order of presentation of morphine and

saline were counterbalanced for each group. Conditioning

was conducted as previously described in detail, using an

unbiased procedure (De Fonseca et al., 1995).

2.6.3. Testing

The testing phase was carried out on day 5, 1 day after

the last conditioning session, in a morphine-free state. Each

animal was tested once only. For testing, the removable wall

was raised, and the animals had a free choice in the

apparatus for 15 min. The time spent in drug-paired

compartment was recorded for each animal and the change

of preference was calculated as the difference (in seconds)

between the time spent in the drug-paired compartment on

the testing day, and the time spent in this compartment in the

pre-conditioning day.

2.7. Induction and assessment of morphine place

conditioning

In a pilot study, the effects of s.c. administration of

different doses of morphine (0.5, 2.5, 5, 7.5 and 10 mg/kg)

on the induction of a CPP were determined. Morphine or

saline was injected in a 3-day schedule of conditioning as

described in detail in Section 2.7. The time spent in the

drug-paired compartment on the testing day minus that

spent in this compartment in the pre-conditioning day was
calculated to assess the CPP induction. Animals were tested

in a morphine-free state. This may eliminate the possibility

that morphine-induced motor effects influence the response

(Olmeasted and Franklin, 1997; Karami et al., 2003).

2.8. Effects of cholinoceptor agents with or without

morphine on CPP

Co-administration of physostigmine, atropine, nicotine or

mecamylamine with morphine, during conditioning, was

used to determine their effects on morphine-induced place

preference in rats. Physostigmine (1, 3 and 5 Ag/rat),
atropine (1, 4 and 7 Ag/rat), nicotine (0.75, 1 and 2 Ag/rat)
or mecamylamine (1, 3 and 6 Ag/rat) were injected into the

basolateral amygdala once per day for 3 days, immediately

before the administration of morphine (three pairings). The

conditioning scores were then measured in a drug-free state

on the test day. Intra-basolateral amygdala injections of the

same (above mentioned) doses of all drugs without

morphine, during conditioning, were also used to assess

their effects on CPP. The conditioning scores were then

measured in a drug-free state on the test day.

2.9. Effects of cholinoceptor antagonists on the response

induced by physostigmine or nicotine during morphine

conditioning

Effects of intra-basolateral amygdala injections of atro-

pine (7 Ag/rat) or mecamylamine (6 Ag/rat) on the response

induced by physostigmine (1, 3 and 5 Ag/rat) or nicotine

(0.75, 1 and 2 Ag/rat) during morphine (0.5 mg/kg)

conditioning (once/daily, for 3 days) were determined in

these experiments. The respective control groups received

saline (0.5 Al/rat) per side, intra-basolateral amygdala, three

pairings. In these cases, atropine, mecamylamine or saline

was injected into the basolateral amygdala, immediately

before the administration of physostigmine or nicotine. The

conditioning scores were then measured in a drug-free state

on the test day.

2.10. Measurement of the effects of drug treatments on

locomotor activity

Locomotor testing was carried out on the fifth day of

the schedule for rats that received place conditioning,

using the CPP apparatus. To measure the locomotor

activity, the ground area of the CPP compartments was

divided into four equal sized squares. Locomotion was

measured as the number of crossings from one square to

another during 15 min.

2.11. Histology

After completion of behavioral testing, each animal was

sacrificed with an overdose of chloroform. Animals

received a 0.5-Al/side injection of ink (1% aquatic
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methylene blue solution). The brains were then removed

and fixed in a 10% formalin solution for 10 days before

sectioning. Sections were examined to determine location

of the cannulae aimed for the BLA. The cannulae

placements were verified using the atlas of Paxinos and

Watson (1986). Data from animals with injection sites

located outside the BLA region were not used in the

analysis.

2.12. Statistics

Comparisons between groups were made with one- or

two-way analysis of variance (ANOVA) following Tukey

test. A difference with P <0.05 between experimental

groups was considered statistically significant. Calculations

were performed using the SPSS statistical package.
3. Results

3.1. Dose–response curve for place preference conditioning

produced by morphine in rats

Fig. 1 shows the dose–response curve for place

conditioning induced by morphine in rats. Animals

which received saline (1.0 ml/kg) twice daily, during

six sessions, exhibited no preference for either compart-

ment. Administration of different doses of morphine (0.5,

2.5, 5, 7.5 and 10 mg/kg) during conditioning, induced

CPP [one-way ANOVA; F(5, 42)=17.67, P <0.001].

Maximum response was observed with 7.5 mg/kg of

opioid.
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Fig. 1. Place preference produced by morphine. Different doses of morphine

subcutaneously (s.c) in a 3-day schedule of conditioning. On the test day, the a

assessed as the difference between the time spent on the day of testing and the ti

meanTS.E.M. of 8 animals per group. **P <0.01, ***P <0.001 different from th
3.2. Effects of cholinoceptor agents with or without

morphine on CPP

Fig. 2. shows the effect of physostigmine, with or

without morphine, on CPP. Two-way ANOVA indicates a

significant difference between the response to physostig-

mine (1, 3 and 5 Ag/rat, intra-BLA) and that to physos-

tigmine plus the lower dose of morphine (0.5 mg/kg)

[Factor morphine, F(1,56)=377.7, P <0.001; Factor phys-

ostigmine, F(3,56)=23.9, P <0.001; Factor morphine�
physostigmine, F(1, 56)=24.4, P <0.001]. In addition,

one-way ANOVA revealed that the lower dose of morphine

and physostigmine alone did not induce a significant place

preference [F(3,28)=0.9, P >0.05]. Furthermore, physos-

tigmine potentiated the morphine-induced place preference

[F(3,28)=12.1, P <0.001].

Fig. 3 shows the effect of atropine, with or without

morphine, on CPP. Two-way ANOVA indicates a significant

difference between the response to atropine (1, 4 and 7 Ag/
rat, intra-BLA) and that to atropine plus morphine (7.5 mg/

kg) [Factor morphine, F(1,56)=149.1, P <0.001; Factor

atropine, F(3, 56) =20.5, P <0.001; Factor morphine -

�atropine, F(3,56)=14.2, P <0.001]. In addition, one-

way ANOVA revealed that atropine alone induced neither

a significant place preference nor place aversion

[F(3, 28) =1.3, P >0.05]. Furthermore, atropine dose-

dependently inhibited the morphine-induced place prefer-

ence [one-way ANOVA: F(3,28)=20.8, P <0.001].

Fig. 4. shows the effect of nicotine, with or without

morphine, on CPP. Two-way ANOVA indicates a significant

difference between the response to nicotine (0.75, 1 and 2

Ag/rat, intra-BLA) and that to nicotine plus the lower dose
**  

 ***      ***

              5                 7.5                10

ine (mg/kg)

(0.5, 2.5, 5, 7.5 and 10 mg/kg) and saline (1 ml/kg) were administered

nimals were observed for a 15-min period. The change of preference was

me spent on the day of the pre-conditioning session. Data are expressed as

e saline control group.



-100

0

100

200

300

400

500

C
h

a
n

g
e
 o

f 
p

re
fe

re
n

c
e
 (

s
e
c
)

   **

              Saline (1 ml/kg)                                            Morphine (0.5 mg/kg)

     ***
***

 Saline 1 3 5  Saline 1 3 5

Physostigmine (µg/rat)                                            Physostigmine (µg/rat)

Fig. 2. The effects of bilateral intra-BLA injection of physostigmine, either alone or in combination with morphine, on the acquisition of a conditioned place

preference. The animals received physostigmine (1, 3 and 5 Ag/rat) or saline (1 Al/rat) with or without morphine (0.5 mg/kg, S.C.), in a 3-day schedule of

conditioning. On the test day, the animals were observed for a 15-min period. The change of preference was assessed as the difference between the time spent

on the day of testing and the time spent on the day of the pre-conditioning session. Data are expressed as meanTS.E.M. of 8 animals per group. **P <0.01,

***P <0.001 different from the saline/morphine group.
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of morphine (0.5 mg/kg) [Factor morphine, F(1,56)=381.3,

P <0.001; Factor nicotine, F(3,56)=32.5, P <0.001; Factor

morphine�nicotine, F(3,56)=31.7, P <0.001]. In addition,

one-way ANOVA revealed that the lower dose of morphine

and nicotine alone did not induce a significant place

preference [F(3,28)=0.1, P >0.05]. Furthermore, nicotine

potentiated the morphine (0.5 mg/kg)-induced place prefer-

ence [F(3,28)=21.2, P <0.001].

Fig. 5 shows the effect of mecamylamine, with or

without morphine, on CPP. Two-way ANOVA indicates a
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Fig. 3. The effects of bilateral intra-BLA injection of atropine, either alone or

preference. The animals received atropine (1, 4 and 7 Ag/rat) or saline (1 Al/rat) in c
schedule of conditioning. On the test day, the animals were observed for a 15-min

time spent on the day of testing and the time spent on the day of the preconditio

**P <0.01, ***P <0.001 different from the saline/morphine group.
significant difference between the response to mecamyl-

amine (1, 3 and 6 Ag/rat, intra-BLA) and that to

mecamylamine plus morphine (7.5 mg/kg) [Factor mor-

phine, F(1,56)=251.2, P <0.001; Factor mecamylamine,

F(3, 56)=19.8, P <0.001; Factor morphine�mecamyl-

mecamylamine, F(3, 56)=10.6, P <0.001]. In addition,

one-way ANOVA revealed that mecamylamine alone

neither induced a significant place preference nor place

aversion [F(3,28)=1.4, P >0.05]. Furthermore, mecamyl-

amine dose-dependently inhibited the morphine (7.5 mg/
**

   ***
***  

                      Morphine (7.5 mg/kg)

Saline        1             4            7

Atropine (µg/rat)

in combination with morphine, on the acquisition of a conditioned place

ombination with morphine (7.5 mg/kg, s.c.) or without morphine, in a 3-day

period. The change of preference was assessed as the difference between the

ning session. Data are expressed as meanTS.E.M. of 8 animals per group.
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kg)-induced place preference [one-way ANOVA: F(3,28)=

9.7, P <0.001].

3.3. Effects of cholinoceptor antagonists on response

induced by physostigmine or nicotine during morphine

conditioning

Fig. 6 shows the effects of the cholinoceptor agents on

morphine-induced place preference. A significant difference

[two-way ANOVA; F(2, 84)=200.6, P <0.001] and an

interaction [F(6,84)=40.8, P <0.001] was found between
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Fig. 5. The effects of bilateral intra-BLA injection of mecamylamine, either alone

preference. The animals received mecamylamine (1, 3 and 6 Ag/rat) or saline (1 Al/
a 3-day schedule of conditioning. On the test day, the animals were observed for

between the time spent on the day of testing and the time spent on the day of the pr

group. *P <0.05, **P <0.01, ***P <0.001 different from the saline/morphine gro
the groups of animals that received atropine (7 Ag/rat, intra-
BLA) or mecamylamine (6 Ag/rat, intra-BLA) 5 min before

physostigmine (1, 3 and 5 Ag/rat, intra-BLA) injection plus

morphine (0.5 mg/kg) in the conditioning sessions. Post hoc

analysis showed that pretreatment injections of atropine

inhibited the response induced by physostigmine plus

morphine.

Fig. 7 shows the effects of the cholinoceptor agents

on morphine-induced place preference. Two-way

ANOVA revealed a significant difference [F(2, 84)=

195.3, P <0.001] between groups of animals that received
*

***
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 **

1 3 6 Saline
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or in combination with morphine, on the acquisition of a conditioned place

rat) in combination with morphine (7.5 mg/kg, s.c.) or without morphine, in

a 15�min period. The change of preference was assessed as the difference

econditioning session. Data are expressed as meanTS.E.M. of 8 animals per

up.
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mecamylamine (6 Ag/rat, intra-BLA) or atropine (7 Ag/
rat, intra-BLA) 5 min before nicotine (0.75, 1 and 2 Ag/
rat, intra-BLA) injection plus morphine (0.5 mg/kg) in
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preference. The animals received an intra-BLA injection of either saline (1 Al/rat)
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the test day, the animals were observed for a 15-min period. The change of prefe

testing and the time spent on the day of the pre-conditioning session. Data are expre

saline/nicotine group.
the conditioning sessions with interaction [F(6,84)=29.5,

P <0.001]. Post hoc analysis showed that mecamylamine

blocked the response induced by nicotine plus morphine.
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, atropine (7 Ag/rat) or mecamylamine (6 Ag/rat) immediately before intra-

they were injected with morphine (0.5 mg/kg, s.c.) during conditioning. On

rence was assessed as the difference between the time spent on the day of

ssed as meanTS.E.M. of 8 animals per group. ***P <0.001 compared to the



M.-R. Zarrindast et al. / Pharmacology, Biochemistry and Behavior 82 (2005) 1–108
3.4. Effects of the drugs on locomotor activity

One-way ANOVA indicates that the different doses of

morphine (0.5, 2.5, 5 7.5 and 10 mg/kg) [F(5,42)=1.59,

P >0.05], physostigmine (1, 3 and 5 Ag/rat) [F(3,28)=0.11,
P >0.05], atropine (1, 4 and 7 Ag/rat) [F(3,28)=0.64,

P >0.05], nicotine ( 0.75, 1 and 2 Ag/rat) [F(3,28)=0.6,

P >0.05] or mecamylamine (1, 3 and 6 Ag/rat) [F(3,28)=
1.6, P >0.05] alone had no effect on the locomotor activity

during the testing phase. Besides, the bilateral intra-BLA

injection of physostigmine [F(3,28)=1.35, P >0.05], atro-

pine [F(3, 28)=1.4, P >0.05], nicotine [F(3, 28)=1.6,

P > 0.05] or mecamylamine (1, 3 and 6 Ag/rat)
[F(3,28)=1.9, P >0.05] plus the subcutaneous injection

of morphine did not induce any effect on locomotor

activity during the testing phase (data not shown).
4. Discussion

In the present experiments, we examined the interaction

of cholinoceptor agents with morphine in the rat basolateral

amygdala on place preference conditioning. Rats were

injected (s.c.) with morphine (0.5, 2.5, 5, 7.5 and 10 mg/

kg, three sessions) using an unbiased conditioned place

preference (CPP) paradigm. In accord with previous studies

(De Fonseca et al., 1995; Shippenberg et al., 1996), our data

indicated that morphine induced a significant CPP, dose

dependently. The drug at the doses used in our experiments

did not alter locomotor activity in comparison with the

control group. This is in agreement with other evidence

indicating that the conditioned stimulus is a critical

determinant of the form of conditioned locomotor response

in a morphine conditioning setup (Sukhotina, 2001; Lu et

al., 2002).

Numerous studies have pointed to the mesolimbic

dopaminergic pathway projecting from the ventral tegmen-

tal area to the nucleus accumbens as a critical site for the

initiation of psychological dependence on opioids (Narita et

al., 2001; Shippenberg et al., 1993; Manzanedo et al.,

2001). It is known that there exists an interaction between

opioids and the cholinergic systems (Walker et al., 1991;

Introini and Baratti, 1984). Moreover, it is also reported that

A and y receptors located on cholinergic terminals, are

normally under tonic inhibition by the opiate system

(Heijna et al., 1990). Decker and McGaugh (1991) reported

that morphine inhibits cholinergic activity in the hippo-

campus. Synaptic acetylcholine (Ach) release in the VTA

has an excitatory function on DA neuronal activity (Greba

et al., 2000). Furthermore, BLA connects anatomically with

the nucleus accumbens (Nac; Johnson et al., 1994; Kelley

et al., 1982) and shares reciprocal connections with the

ventral tegmental area (VTA; Asan, 1998). Considering that

the acquisition of cue preferences and conditioned rein-

forcement involves basolateral amygdala (BLA; Holland

and Gallagher, 1999) and that the cholinergic activation in
the BLA has an important role in learning and memory

(Power and McGaugh, 2002; Barros et al., 2002), we first

evaluated the effect of bilateral microinjections of the

cholinoceptor agents into the BLA on the acquisition of

CPP.

We showed that the administration of the anticholines-

terase, physostigmine, antimuscarinic receptor, atropine,

nicotine and the nicotinic antagonist mechamylamine into

the BLA did not produce a significant CPP or conditioned

place aversion. These results have not been previously

reported and reveal that stimulation or inhibition of

cholinoceptors in this site may not initiate rewarding effects.

Our present experiments show that the lower dose of

morphine (0.5 mg/kg), did not induce a significant CPP on

its own, but that in combination with physostigmine (1, 3 and

5 Ag/rat, intra-BLA), it dose dependently induced place

preference. The present data also show that blockade of

muscarinic receptors by different doses of atropine into BLA

abolished morphine-induced place preference in a dose-

dependent manner. Other studies indicated that physostig-

mine potentiated the antinociceptive effect of morphine

(Beilin et al., 1997; Patil and Kulkarni, 1999). Thus, it seems

possible that physostigmine by itself, or in combination with

morphine, potentiates morphine reward. Considering the fact

that CPP is a learning paradigm (Calcagnetti and Schechter,

1991; Tzschentke, 1998) and physostigmine improves

learning (Zarrindast et al., 1998), it seems possible that

cholinergic stimulation by improving reward-related learn-

ing is involved in morphine-induced rewarding effect (CPP).

In another set of experiments, the effects of intra-BLA

administration of nicotine or/and nicotinic receptor antag-

onist, mecamylamine on the induction of place preference

and acquisition of morphine-induced place preference were

studied to further assess the role of nicotinic receptors. Our

results showed that the intra-BLA administration of

nicotine by itself in conditioning sessions did not induce

place preference, although it has been observed that

systemic injection of nicotine induces CPP (Shoaib et al.,

1994; Zarrindast et al., 2003a). Therefore, it is likely that

BLA by itself is not a site of reward in this respect. In

addition, the co-administration of nicotine (intra-BLA) with

morphine, significantly and dose-dependently increased

morphine-induced place preference. Both morphine and

nicotine have been shown to produce a reinforcing effect,

which according to some hypotheses, may be due to their

common property of facilitating dopaminergic transmis-

sions (Di Chiara, 2000). Several studies have also

demonstrated that the stimulation of the mesolimbic

dopamine system is of critical importance for the reinforc-

ing and stimulatory properties of nicotine (Nisell et al.,

1995; Pontieri et al., 1996) and morphine (Olmeasted and

Franklin, 1997; McBride et al., 1999). Thus, It seems

possible that the potentiation of morphine response by

intra-BLA administration of nicotine may be mediated

through dopaminergic mechanisms. On the other hand, the

present data also show that mecamylamine (intra-BLA)
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alone induces neither a significant place preference nor

place aversion, but co-administration of the drug with

morphine dose-dependently inhibited the morphine-induced

place preference. In agreement with our results, other

studies have shown that peripheral or intra-VTA injection

of mecamylamine reduces alcohol’s effects on the meso-

limbic dopamine system (Blomqvist et al., 1993; Ericson et

al., 1998). Zachariou et al. (2001) have also found that

mecamylamine disrupted cocaine-induced place preference.

The potentiation or the inhibition of morphine-induced CPP

by nicotine and mecamylamine, respectively, may indicate

that nicotinic receptors in BLA play an important role in

morphine reward.

Our data also show that intra-BLA injection of atropine,

but not mecamylamine, reversed the response induced by

physostigmine plus morphine. Furthermore, intra-BLA

injections of mecamylamine, but not atropine, reversed the

nicotine plus morphine response. These results indicate that

physostigmine- and nicotine-induced potentiation of mor-

phine-induced CPP, is mediated through two separate

muscarinic and nicotinic receptor mechanisms.
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